Backward Iterations for Solving Integral Equations with Polynomial Nonlinearity
نویسندگان
چکیده
The theory of adjoint operators is widely used in solving applied multidimensional problems with the Monte Carlo method. Efficient algorithms are constructed using duality principle for many described linear integral equations second kind. On other hand, important applications designing experiments were suggested by G.I. Marchuk and his colleagues their respective works. Some results obtained these fields also generalized to case nonlinear operators. Linearization methods mostly that purpose. Lyapunov–Schmidt polynomial methods. However, interesting questions this subject area remain open. New about dual processes method presented. In particular, Markov process branching corresponding unbiased estimate functional solution equation general form. possibility constructing an operator a one discussed.
منابع مشابه
A Numerical Approach for Solving of Two-Dimensional Linear Fredholm Integral Equations with Boubaker Polynomial Bases
In this paper, a new collocation method, which is based on Boubaker polynomials, is introduced for the approximate solutions of a class of two-dimensional linear Fredholm integral equationsof the second kind. The properties of two-dimensional Boubaker functions are presented. The fundamental matrices of integration with the collocation points are utilized to reduce the solution of the integral ...
متن کاملExpansion methods for solving integral equations with multiple time lags using Bernstein polynomial of the second kind
In this paper, the Bernstein polynomials are used to approximate the solutions of linear integral equations with multiple time lags (IEMTL) through expansion methods (collocation method, partition method, Galerkin method). The method is discussed in detail and illustrated by solving some numerical examples. Comparison between the exact and approximated results obtained from these methods is car...
متن کاملA New Polynomial Method for Solving Fredholm –Volterra Integral Equations
Abstract— A new polynomial method to solve Volterra–Fredholm Integral equations is presented in this work. The method is based upon Shifted Legendre Polynomials. The properties of Shifted Legendre Polynomials and together with Gaussian integration formula are presented and are utilized to reduce the computation of Volterra–Fredholm Integral equations to a system of algebraic equations. Some num...
متن کاملNon-polynomial Spline Method for Solving Coupled Burgers Equations
In this paper, non-polynomial spline method for solving Coupled Burgers Equations are presented. We take a new spline function. The stability analysis using Von-Neumann technique shows the scheme is unconditionally stable. To test accuracy the error norms 2L, L are computed and give two examples to illustrate the sufficiency of the method for solving such nonlinear partial differential equation...
متن کاملAn efficient technique for solving systems of integral equations
In this paper, the wavelet method based on the Chebyshev polynomials of the second kind is introduced and used to solve systems of integral equations. Operational matrices of integration, product, and derivative are obtained for the second kind Chebyshev wavelets which will be used to convert the system of integral equations into a system of algebraic equations. Also, the error is analyzed and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Vestnik St. Petersburg University: Mathematics
سال: 2022
ISSN: ['1063-4541', '1934-7855']
DOI: https://doi.org/10.1134/s1063454122010046